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Relevant applications

 Gravitation / Particle theory:
Some theories of particle physics predict deviations from the 
Newtonian gravitational potentials in the micron and submicron range

The Casimir force is the main background force to measure these 
non-Newtonian corrections to gravity

Yukawa-like potential:



Relevant applications

 Quantum Science and Technology:

Atom-surface interactions

Example: Casimir-Polder interaction between a BEC and a surface

Precision measurements

E. Cornell et al,  Phys. Rev. Lett. 98, 063201 (2007)



Relevant applications

 Nanotechnology:

Actuation in NEMS and MEMS 
driven by Casimir forces

Zhao et al,  Adhesion Sci. 
Technol. 17, 519 (2003) 

Problems with stiction of 
movable parts in MEMS

F. Capasso et al,  Science 291, 
1941 (2001)

“pull-in” effect
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Modern experiments

 Torsion pendulum

sphere-plane, d=1-10 um
Lamoreaux

 MEMS and NEMS

sphere-plane, d=200-1000 nm
Capasso, Decca

 Atomic force microscope

sphere-plane, d=200-1000 nm
Mohideen

 Micro-cantilever

plane-plane, cylinder-plane, d=1-3 um
Onofrio



Tailoring the Casimir force

 The magnitude and sign of the Casimir force depend on 
the geometry and composition of surfaces

Engineer geometries and designer materials for various applications:

• Demonstration of strongly modified/repulsive Casimir forces

• Demonstration of vacuum drag via lateral Casimir forces

 From ideal to real materials: The Lifshitz formula

Dominant frequencies in the near-infrared/optical 
region of the EM spectrum (gaps d= 200-1000 nm)



The Lifshitz formula

dMatsubara frequencies

Reflection coefficients

Kramers-Kronig (causality) relations: 
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occurring materials do NOT have strong 
magnetic response in the optical region, i.e. 
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 Real repulsive limit
Casimir repulsion is associated with strong 
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Metamaterials
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Casimir cavity:

Repulsion

For real materials, however .....

• According to causality, no passive medium (               ) can sustain                  
over a wide range of frequencies. In fact,  

• Leonhardt proposes to use an active MM (                ) in order to get 
repulsion. But then the whole approach breaks down, as real photons would 
be emitted into the quantum vacuum. 

ε”(ω) > 0 ε, µ ! −1

ε(iξ), µ(iξ) > 0

ε”(ω) < 0

2b−b

b
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Metamaterials for Casimir 

Metamaterial

Drude-Lorentz model:

εα(ω) = 1 −

Ω2

E,α

ω2
− ω2

E,α + iΓE,αω

µα(ω) = 1 −

Ω2

M,α

ω2
− ω2

M,α + iΓM,αω

Re ε2(ω) < 0 Re µ2(ω) < 0

Drude metal (Au)

ΩE,2/Ω = 0.1 ΩM,2/Ω = 0.3

ωE,2/Ω = ωM,2/Ω = 0.1

ΓE,2/Ω = ΓM,2/Ω = 0.01

Ω/2π = 5 × 10
14

rad s
−1

ΩE = 9.0 eV ΓE = 35 meV

Infrared-optical frequencies

Typical separations 
d = 200 − 1000 nm
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A slab made of Au (                         ) of width                could levitate in 
front of one of these MMs at a distance of                     !!!

ρ = 19.3 gr/cm3 δ = 1µm

d ≈ 110 nm

Dalvit et al, PRA 75, 052117 (2007) van der Waals in magneto-dielectrics
Lambrecht et al, PRL 94, 110404 (2005) Casimir and surface plasmons

Henkel et al, EPL 72, 929 (2005) Casimir and metamaterials



Conclusions

 Build MMs with strong magnetic response at 
infrared-optical frequencies, corresponding to gaps 
between 200 nm and 10 microns. 

 Validity of the continuum description? Extensions of 
Lifshitz formula to periodic structures...

 Fabrication of MMs on torsion pendulum plane or on 
oscillating MEMS/NEMS  

 Similar issues apply to tailored plasmons, e.g. SAA

 Metamaterials can strongly influence the quantum 
vacuum, providing a route towards quantum levitation. 



The Casimir force and MMs

Review article by Steve Lamoreaux on page 40:

“Casimir forces: still surprising after 60 years”


